fraktaler-3-2.1

Claude Heiland-Allen

2023-07-14
Contents

Fraktaler 3 2
Live . . . 2
Download e 3
Run 3
Wisdom e 3

Run GUI e e 4

Run CLI e 5

Run Web 5

Run Android e 5

GUIL . e 5
Navigation o . o e e e 5
Fraktaler 3 Window e e e 5
Input/Output Window L e 6
Formula Window 6
Status Window L 6
Location Window e 6
Reference Window e e 6
Bailout Window L e e e e 6
Transform Window e 7
Algorithm Window 7
Quality Window e 7
Newton Zooming Window L e 7
Wisdom Window 7
About Window 7

CLI . . 7
Parameters 7
Location Parameters e 7
Reference Parameters e 8
Bailout Parameters e e e e e e 8
Transform Parameters e 8
Image Parameters L L 8
Render Parameters e 9
Newton Parameters. e e e 9
Algorithm Parameters L e 9
OpenCL Parameters e 9
Formula Parameters 10
Recommended Parameters for Zoomasmo o 10
SOUICE . . o v e o e e e e e e e e e 10
Build e e 10
Source Dependencies 10

Optional Features e
Build For Debian
Build For Windows e
Emscripten Dependencies
Build For Android e
Build Documentation e e e
Build Release e e e e e e e e e
Theory . . .« o o e e
The Mandelbrot Set e
Perturbation e
Rebasing o e
Bivariate Linear Approximation L
Single Step BLA L
Merging BLA Steps e
BLA Table Construction e e
BLA Table Lookup e e
Non-Conformal BLA e
ABS Variation BLA
Hybrid BLA o
Multiple Critical Points
Distance Estimation e
Interior Detection e e
Alternatives L
TODO . . . e
Bugs e
History . . . o o e e e
Version O e
Version 1 . . . o o e e e e e e e e e e
Version 1.1
Version 2 L
Version 1.2 . . . o o e e e e e e e e e e e e e e e e e e
Version 1.2.1 e e
Version 2.1 L e

Fraktaler 3

Fast deep hybrid escape time fractals.
https://fraktaler.mathr.co.uk

Fraktaler 3 is a cross-platform program (Linux, Windows, Android, Web) for fast deep zooming of hybrid
escape-time 2D fractals. It has a graphical explorer using SDL2, OpenGLES and Dear ImGUI, and a batch
mode for high resolution images and zoom sequences, with optional export of raw data in EXR format

compatible with Kalles Fraktaler 2 + and zoomasm.

See images and videos made with Fraktaler 3.

Live

Try Fraktaler 3 live online in your web browser.
https://fraktaler.mathr.co.uk/live/latest

Requires support for SharedArrayBuffer, among other web APIs.

Performance is significantly slower than native versions, which are available for download below.

https://fraktaler.mathr.co.uk
https://mathr.co.uk/kf/kf.html
https://mathr.co.uk/zoomasm
https://mathr.co.uk/web/fraktaler.html#Gallery
https://mathr.co.uk/web/fraktaler.html#Videos
https://fraktaler.mathr.co.uk/live/latest

Download

https://fraktaler.mathr.co.uk/download/latest

Source code fraktaler-3-VERSION.7z

Documentation fraktaler-3-VERSION.pdf

Windows (EXE) fraktaler-3-VERSION-windows.7z

Android (APK), requires Android 5 (Lollipop, API 21, 2014) or above uk.co.mathr.fraktaler.v3-VERSION. aj

Run
Output of fraktaler-3 --help:

usage:
fraktaler-3 [mode] [flags ...] [inputfile [inputfile ...]]
modes of operation:

-h, --help print this message and exit
-V, --version print version information and exit
-i, --interactive interactive graphical user interface
-b, --batch command line batch processing
-W, —-—generate-wisdom generate initial hardware configuration
-B, --benchmark-wisdom benchmark hardware for optimal efficiency
-S, ——export-source export this program's source code
flags
-v, —-verbose increase verbosity
-q, ——quiet decrease verbosity
-p, ——persistence file path to persist state
-P, --no-persistence don't persist state
-w, ——wisdom file path to wisdom

input files are merged in command line order

The help text will list the default locations for persistence and wisdom files on your system, as well as the file
name for the -—export-source option.

Multiple parameter files may be specified on the command line. After persistence is loaded, they are merged
in order (later files override earlier files). This allows you to keep different aspects of parameters in different
files.

Wisdom

Fraktaler 3 can use regular CPU-based code, and OpenCL-based code for CPU and GPU devices. All of
these can be used simultaneously. The speed of each device for each number type are stored in a “wisdom”
file, along with some other metadata like precision and range of each type, and hardware groupings.

OpenCL may be faster depending on hardware. OpenCL with CPU is typically faster than the regular CPU
code, possibly apart from zoom depths between 1e300 and 1e4920 or so where the regular CPU code can use
the long double number type (on x86/x86_64 hardware).

Fraktaler 3 uses wisdom to automatically choose the best number type and devices to use for each location.
If wisdom is not enumerated and benchmarked for your hardware, placeholder defaults are used, which may
be suboptimal (for example, OpenCL will not be used).

Wisdom GUI The wisdom dialog in the user interface allows enumeration of hardware. Check the unlock
box to the left of the enumerate button, then click the enumerate button.

https://fraktaler.mathr.co.uk/download/latest

To benchmark the hardware, check the unlock box to the left of the benchmark button, then click the
benchmark button. It takes a couple of minutes per device. Speeds are reported logarithmically: an increase
of 1 unit corresponds to a factor 2 increase in speed.

Multiple backends may use the same underlying hardware (for example PoCL and the builtin CPU imple-
mentation both use the same processor). To prevent contention, and use only the fastest, hardware can be
grouped. For example, enumeration may give cpu0 and cpul, if these use the same hardware (as is likely)
then rename them all to cpu0.

The text fields below the hardware groups are labels for convenience, and do not affect how wisdom is used.

Each backend can be individually enabled or disabled using the check boxes. The currently used backends
are highlighted.

Wisdom can be saved to disk. If the file is saved in the default location with the name wisdom.toml it will
be loaded automatically. On Android, the save and load buttons operate only with this file.

Wisdom CLI To enumerate and benchmark wisdom without the graphical user interface you can run
these two steps manually:

./fraktaler-3 --generate-wisdom
./fraktaler-3 --benchmark-wisdom

The wisdom has two main parts, the type map, and the hardware map. If a particular (platform, device,
numbertype) causes problems when benchmarking wisdom, disable them in the type map before benchmarking.
If a particular (platform, device) causes problems when benchmarking wisdom, disable them in the hardware
map before benchmarking.

After benchmarking wisdom, edit the hardware map to ensure each (platform, device) is in a group corre-
sponding to the real hardware device: typically this would involve putting the regular CPU code without
OpenCL (platform -1) into the same group as CPU with OpenCL (for example the PoCL implementation).
You can also rename the devices if desired.

You can specify an alternative wisdom file with the —-wisdom flag.

Run GUI

See above for details on wisdom for optimal operation.
./fraktaler-3 --interactive

You need support for recent OpenGLES. If you don’t have it, the program window may appear briefly before
closing without any error messages visible, or a dialog may appear with an error message.

On Microsoft Windows, if your GPU drivers do not support it you can install Mesa 3D and the Vulkan
Runtime from:

o https://github.com/pal1000/mesa-dist-win/releases
o https://vulkan.lunarg.com/sdk/home#windows

Use the mesa-dist-win per-app deployment script.

On Linux, with recent Mesa on old hardware, you can try setting the environment variable
LIBGL_ALWAYS_SOFTWARE=1.

State is remembered between runs, which causes problems with multiple concurrent sessions. To use a
different store for this state, you can specify an alternative file with the —-persistence flag, or disable
persistence completely with the -—-no-persistence flag.

https://github.com/pal1000/mesa-dist-win/releases
https://vulkan.lunarg.com/sdk/home#windows

Run CLI
See above for details on wisdom for optimal operation.

./fraktaler-3 --batch

Run Web
Configure web server with headers:

Cross-Origin-Embedder-Policy: require-corp
Cross-Origin-Resource-Policy: same-origin
Cross-Origin-Opener-Policy: same-origin

Make sure *.wasm is served with MIME type application/wasm
Serve the 1ive/ sub-folder. Needs httpS for non-localhost domains.

You must serve the corresponding source code to comply with the license.

Run Android
Install the APK, then click the icon on your app menu.
See above for details on wisdom for optimal operation.

Parameters can be exported and imported via the system clipboard, see the Input/Output Window for copy
and paste buttons.

GUI

Launch with the -i flag (--interactive).

Navigation

The F10 key toggles the graphical user interface windows, so you can focus on exploring the fractal. If you
do not have a keyboard, you can manually close all the windows by deselecting their checkboxes in the main
Fraktaler 3 window, which can also be collapsed by clicking on the small triangle in the top left.

The fractal can be explored with a mouse. Left mouse down on the desired new image center and drag
to set the new image size; a rectangle is highlighted during the gesture. Release the left mouse button to
confirm the new view, or press the right mouse button (while the left button is still held) to cancel the action.
Alternatively use the scroll wheel to zoom in and out around the mouse cursor position. The middle mouse
button centers the view on the click location.

The fractal can be explored with a keyboard. Numeric keypad keys 1-9 zoom to different quadrants of the
view (1 is bottom left, 9 is top right, 4 is middle left, and so on, as per usual layout). The 0 key zooms
out. Page Up and Page Down also zoom keeping the center fixed. Numeric keypad keys + and - adjust the
maximum iteration count (doubling and halving respectively), which can also be set in the Bailout window.

The fractal can be explored with multi-touch. One touch translates the view. Two touches zoom and rotate.
Three touches enables stretching or skewing the image. If you have no multi-touch device, but do have a
mouse and keyboard, you can use multi-touch emulation. Hold Ctrl4+Shift and the left mouse button to add
or move a touch point. Hold Ctrl4Shift and press the right mouse button to delete a touch point. Delete all
touch points to finish the gesture and confirm the action.

Fraktaler 3 Window

This window has toggles to open/close all the other subwindows.

Input/Output Window

This has a Home button to zoom out to the original view. You must set the checkbox to the left to enable this
to avoid accidents. There are also buttons to Load and Save, which can be as parameter file text (suggested
extension .£3.toml) or images (EXR format, extension .exr). Clicking the Load or Save buttons opens a
file browser dialog. Note: parameters saved as metadata in EXR image files cannot yet be reloaded.

Formula Window

The default formula is the Mandelbrot set, with one line with |X], |Y], -X, -Y all unchecked and P=2. This
corresponds to the familiar formula (X+iY)"2 + C. If you check both |X| and |Y]| then you get the Burning
Ship (|X|+i[Y])"2 + C, if instead you check -Y you get the Mandelbar (aka Tricorn) (X-iY)"2 4+ C. The
+ button on the right lets you add more than one formula, which can be edited independently. These are
iterated in an interleaved fashion, one line after the other in a loop, creating hybrid escape time fractals.
Note: reference orbit processing and memory requirements increase with each line (N lines need N times the
amounts total as 1 line);.

Clicking the adbanced button converts the formula to a list of opcodes:

store store the current Z value for later use by mul.

sqr square the current Z value.

mul multiply the current Z value by the stored value.

absx make the real part of the current Z value positive.

absy make the imaginary part of the current Z value positive.

negx negate the real part of the current Z value.

negy negate the imaginary part of the current 7 value.

add add C to the current Z value (implicit, always last).

Clicking the button between opcodes inserts a new one. Dropdowns allow changing opcode or deleting.

Switching back to simple mode will generally give a different formula.

Status Window

Shows various progress bars to show how rendering is proceeding. There is also a timer.

Location Window

Shows the coordinates and magnification of the view.

Reference Window

Shows the coordinates and period (if any) of the reference (which is usually the image center).

Bailout Window

Adjust maximum iteration count if there are solid regions that look out of place. Some images may need the
iteration limit to be millions.

For complex images increase the perturbation limit (Max Ptb Iters) if increasing the first limit does not fix
the issue. A perturbation limit of a few thousand is usually sufficient.

Similarly, the BLA step limit can be increased if necessary. A BLA step limit of a few thousand is usually
sufficient. A too-low BLA step limit can lead to glitchy images.

Note: excessively increasing the perturbation and BLA step limits can lead to GPU timeouts, or at least
increased calculation time.

The escape radius is adjusted at the bottom, decrease it for high power formulas if unsightly rings appear
around the fractal.
Transform Window

Adjust image transformation, including reflection (useful if your Burning Ship is upside down), rotation,
and stretch. The exponential map feature is not so useful in the graphical program, but can be used in the
command line version for rendering a zoom out sequence for later assembly into a video using zoomasm
(https://mathr.co.uk/zoomasm).

Algorithm Window

Contains advanced algorithm tuning options. Be careful if you adjust these as sometimes bad images can
result. See algorithm parameters section below.

Quality Window

Control image quality. Increasing top value decreases quality (but increases speed) by subsampling the image.
Increasing the bottom value increases quality by computing many versions of the image and averaging them.
Setting the bottom value to 0 will compute more subframes indefinitely, allowing you to stop when the quality
gets high enough for you.

Newton Zooming Window

Zooms automatically to mini-sets or embedded Julia sets deep in the fractal. Set the options (each action
includes the ones above), then select the activate checkbox and left-click in the image where you want to
zoom. Remember to deselect the activate checkbox if you want to use the left mouse zooming feature.

Wisdom Window

Configures wisdom, see discussion above.

About Window

Displays version information and software licenses.

CLI
Launch with the -b flag (--batch).

Parameters

Parameters are stored in TOML format (suggested filename extension .£3.toml). Parameters that are
unchanged from the default values are omitted from files saved by Fraktaler 3. Metadata is also stored in
EXR image files (viewable with the exrheader program).

Loading parameters saved from old versions into a new version of Fraktaler 3 should always work. Loading
parameters saved from new versions of Fraktaler 3 into an old version may behave unexpectedly.
Location Parameters

Location parameters are strings to store more range and/or precision than TOML double precision floating
point.

https://mathr.co.uk/zoomasm

location.real = "O"
location.imag = "0"
location.zoom = "1"

Zoom 1 (without Transform) corresponds to vertical axis from —2 to +2, zoom 2 to —1 to +1, and so on.

When saving from the GUI, long strings are broken across multiple lines.

Reference Parameters
The reference defaults to the location (i.e. center of image).

reference.real = location.real
reference.imag = location.imag
reference.period = 0

Setting an inaccurate period is a good way to get corrupt images; use Newton zooming dialog to find correct
period. 0 means unknown, don’t use period for anything.

When saving from the GUI, long strings are broken across multiple lines.

Bailout Parameters

Iterations can be set arbitrarily high without too much slowdown. Maximum reference iterations should
normally be set to the same as the iterations setting, setting it too low can lead to corrupt images. Maximum
perturb iterations can be left at a few 1000 usually, increase it if you get blobby spiral centers or if mini-sets
are not sharp enough for your taste. Maximum BLA steps can be a few 1000 too, increase it if you get glitchy
areas.

Escape radius and inscape radius do not usually need to be changed, if you get strange iteration bands with
high powers then reduce the escape radius (this is due to overflow of floating point range).

bailout.iterations = 1024
bailout.maximum_reference_iterations = 1024
bailout.maximum_perturb_iterations = 1024
bailout.maximum_bla_steps = 1024
bailout.escape_radius = 625.0
bailout.inscape_radius = 9.765625e-4

Transform Parameters

Angles are in degrees, stretch amount is in cents. Usually you would adjust these interactively in the GUI
using multitouch (or multitouch emulation), or via Newton zooming dialog, or the Autostretch DE button.

Reflect flips the imaginary axis direction.
Exponential map is useful for zoom out sequences, not currently very usable in the user interface.

transform.reflect = false
transform.rotate = 0.0
transform.stretch_angle = 0.0
transform.stretch_amount = 0.0
transform.exponential_map = false

Image Parameters

Sets output image dimensions in pixels. Increasing subsampling reduces image size by that factor. Increasing
subframes increases quality (antialiasing samples per pixel). When subframes is more than 1, output EXR
files contain only RGB data. When subframes is 1, output EXR files in batch mode also contain raw calculation
data so will be large.

image.width = 1024
image.height = 576
image.subsampling = 1
image.subframes = 1

Render Parameters

The filename will have . exr appended, or . ######## . exr appended for zoom out sequences (where ########
is the frame number). A frame count of 0 means the zoom out sequence continues until fully zoomed out
(zoom < 1.0/65536.0).

render.filename = "fraktaler-3"
render.zoom_out_sequence = false
render.zoom_out_factor = 2.0
render.start_frame = 0
render.frame_count = 0

Newton Parameters
These parameters set the defaults in the GUI.

newton.action = 3
newton.domain = false
newton.absolute = false
newton.power = 0.5
newton.factor = 4.0

Algorithm Parameters

If the period of the reference is known (for example after Newton zooming), then locking the maximum
reference iterations to the period can give a good speedup for high iteration areas. When used with a bad
period, bad images can result (for example, moving too far from the valid area can cause pixelation artifacts).

When rendering zoom out sequences, the same reference can be reused instead of being recomputed, saving
time. The reference will be recalculated at each number type change. Reusing bilinear approximation is not
generally applicable at the present time (it depends on zoom depth, so will be less efficient when zooming in,
and cause problems zooming out).

algorithm.lock_maximum_reference_iterations_to_period = false
algorithm.reuse_reference = false
algorithm.reuse_bilinear_approximation = false

The number types could be restricted in earlier versions, but this is no longer implemented here: use wisdom
settings for this instead.

OpenCL Parameters

Increase tile size as much as reasonable without hitting operating system timeouts (bad images will result in
that case, or even crashes of your desktop session, potentially losing unsaved data). For example in one test
location, the default 128x128 took 3 minutes, while 960x1080 took 1m34s, which was only a fraction slower
than 7680x4320 (one tile for the whole image). Making sure there aren’t small fragments of tiles at image
edges is important too, otherwise effective parallelism is reduced.

opencl.tile_width = 128
opencl.tile_height = 128

The tile size also affects regular CPU rendering without OpenCL. It’s then best to set the tile so that the
image size is a common multiple of the tile size and core count. If using multiple GPUs something similar
applies: set the tile size so that the image size is common multiple of the tile size and number of GPUs. This

is more important when using the graphical user interface as it renders one subframe at a time (and so if the
tile size is the image size only one device will be used at a time): batch mode renders subframes all at once
and does not have this limitation.

Tile size can be adjusted in the Algorithm dialog.

Formula Parameters

After all the other parameters, multiple formula blocks corresponding to each line in the formula dialog.

[[formula]]
abs_x = false
abs_y = false
neg_x = false
neg_y = false
power = 2

Recommended Parameters for Zoomasm

Zoomasm https://mathr.co.uk/zoomasm is a tool for assembling zoom out sequences containing raw iteration
data in exponential map format, into zoom videos. Fraktaler 3 can save in a compatible format.

You may need to increase the location zoom so that the first frame’s bottom edge is completely interior (or
exterior), otherwise the end of the zoom may look strange in zoomasm.

Render exponential map zoom out sequence keyframes with raw data included (subframes 1):

image.width = 12288

image.height = 1360
image.subframes = 1
transform.exponential_map = true
render.zoom_out_sequence = true
algorithm.reuse_reference = true
opencl.tile_width = 768
opencl.tile_height = 680

Make the tile size smaller if problems occur.
If reference period is known:

reference.period = ...
algorithm.lock_maximum_reference_iterations_to_period = true

Source

You can browse the source code repository at:

https://code.mathr.co.uk/fraktaler-3

Build

Source Dependencies

git clone https://github.com/ocornut/imgui.git

git clone https://github.com/AirGuanZ/imgui-filebrowser.git
git clone https://github.com/ToruNiina/tomlll.git

git clone https://github.com/martijnberger/clew.git

git clone https://code.mathr.co.uk/fraktaler-3.git

Tested with versions as of 2023-07-13:

10

https://mathr.co.uk/zoomasm
https://code.mathr.co.uk/fraktaler-3

e imgui v1.89.7-18-g77eba4d0d
e imgui-filebrowser fbafb08

e tomlll v3.7.1-79-g1340692

e clew 0.10-28-g50751dd

clew is only used when cross-compiling for Windows.

Optional Features

All features are enabled by default. You can disable them by adding variables to the make command line, for
example:

make STDCXX=c++14 CL= EXR=0 FS= DEBUG=

will use C++14 instead of C++17, without OpenCL acceleration, without OpenEXR image saving support,
without C++ filesystem support, and with debug symbol generation disabled.

Build For Debian
Bullseye or newer is recommended. These instructions are for Bullseye, other releases may need adaptations.

sudo apt install \
build-essential \
git \
libglm-dev \
libmpfr-dev \
libmpfrc++-dev \
libopenexr-dev \
libsdl2-dev \
ocl-icd-opencl-dev \
opencl-headers \
p7zip \
pkg-config \
pocl-opencl-icd \
xxd

Debian gcc

make headers
make

Debian clang

make headers
make SYSTEM=native-clang

Build For Windows
For cross-compilation from Debian.

sudo dpkg --add-architecture i386
sudo apt update
sudo apt install \
build-essential \
git \
mingw-w64 \
p7zip \
wine32 \

11

wine64 \

wine-binfmt \

xxd
sudo update-alternatives --set x86_64-w64-mingw32-g++ /usr/bin/x86_64-w64-mingw32-g++-posix
sudo update-alternatives --set x86_64-w64-mingw32-gcc /usr/bin/x86_64-wb64-mingw32-gcc-posix
sudo update-alternatives --set x86_64-w64-mingw32-gfortran /usr/bin/x86_64-w64-mingw32-gfortran-posix
sudo update-alternatives --set x86_64-w64-mingw32-gnat /usr/bin/x86_64-w64-mingw32-gnat-posix
sudo update-alternatives --set i1686-w64-mingw32-g++ /usr/bin/i686-w64-mingw32-g++-posix
sudo update-alternatives --set i686-w64-mingw32-gcc /usr/bin/i686-w64-mingw32-gcc-posix
sudo update-alternatives --set i1686-w64-mingw32-gfortran /usr/bin/i686-w64-mingw32-gfortran-posix
sudo update-alternatives --set i1686-w64-mingw32-gnat /usr/bin/i686-w64-mingw32-gnat-posix

Use build-scripts to download and build dependencies for your desired architecture. For example:

git clone https://code.mathr.co.uk/build-scripts.git

cd build-scripts

./BUILD.sh download "gmp mpfr mpreal glm sdl2 zlib imath openexr3"
./BUILD.sh x86_64-w64-mingw32 "gmp mpfr mpreal glm sd12 zlib imath openexr3"

Windows i686

make headers
make SYSTEM=i686-w64-mingw32

Batch mode works in Wine on my system. GUI works in Wine on my system. OpenCL did not work in Wine
on my system. Microsoft Windows is untested.

Windows x86__ 64

make headers
make SYSTEM=x86_64-w64-mingw32

Batch mode works in Wine on my system. GUI works in Wine on my system. OpenCL works in Wine on my

system. Microsoft Windows is untested.

Windows armv7 You need 1lvm-mingw because gcc-mingw does not support Windows on ARM: https:
//github.com/mstorsjo/llvm-mingw

Note: -lopengl32 is not supported upstream yet, so the GUI won’t be compiled.

Note: Wine is untested. Microsoft Windows is untested.

make headers

make SYSTEM=armv7-w64-mingw32

Windows aarch64 You need 1llvm-mingw because gcc-mingw does not support Windows on ARM:
https://github.com/mstorsjo/llvm-mingw

Note: -lopengl32 is not supported upstream yet, so the GUI won’t be compiled.

Note: Wine is untested. Microsoft Windows is untested.

make headers
make SYSTEM=aarch64-w64-mingw32

Emscripten Dependencies

Use build-scripts to download and build dependencies. For example:

12

https://mathr.co.uk/web/build-scripts.html
https://github.com/mstorsjo/llvm-mingw
https://github.com/mstorsjo/llvm-mingw
https://github.com/mstorsjo/llvm-mingw
https://mathr.co.uk/web/build-scripts.html

git clone https://code.mathr.co.uk/build-scripts.git

cd build-scripts

./BUILD.sh download "emdsk gmp mpfr mpreal glm sdl2 zlib imath openexr3"
./BUILD.sh emscripten "emsdk gmp mpfr mpreal glm sdl2 zlib imath openexr3"

Emscripten web

make headers
make SYSTEM=emscripten

Build For Android

You need Android command line tools with SDK and NDK. Tested with these versions:

claude@eiskaffee:~/opt/android$./cmdline-tools/tools/bin/sdkmanager --list_installed

Installed packages:

Path | Version
_______ [
build-tools;21.1.2 | 21.1.2
build-too0ls;30.0.2 | 30.0.2
emulator | 32.1.12
ndk;21.4.7075529 | 21.4.7075529
patcher;véd | 1
platform-tools | 34.0.1
platforms;android-21 | 2
platforms;android-31 | 1

] 100% Fetch remote repository...

Description

Android SDK Build-Tools 21.1.2
Android SDK Build-Tools 30.0.2
Android Emulator

NDK (Side by side) 21.4.7075529
SDK Patch Applier v4

Android SDK Platform-Tools
Android SDK Platform 21

Android SDK Platform 31

Location
build-tools/21.1.2
build-tools/30.0.2
emulator
ndk/21.4.7075529
patcher/v4
platform-tools
platforms/android-21
platforms/android-31

Use the android.sh script to download and build dependencies for Android. Set environment variables to

configure, for example:

ANDROID_HOME=${HOME}/opt/android

ANDROID_NDK_HOME=${ANDROID_HOME}/ndk/21.4.7075529

PATH="${ANDROID_HOME}/tools:${PATH}"

PATH="${ANDROID_HOME}/platform-tools:${PATH}"

PATH="${ANDROID_NDK_HOME}: ${PATH}"
./build/android.sh prepare
./build/android.sh

Default is a debug build (runs slow). Release build requires signing.

Build Documentation

Needs pandoc. Built as part of release.

Build Release

Builds all architectures and documentation ready for release. Does not yet include Android.

./build/release.sh clean
./build/release.sh DEBUG= EXR=3

Theory

References:

perturbation technique http://www.science.eclipse.co.uk/sft__maths.pdf

rebasing and BLA https://fractalforums.org/f/28/t/4360

13

http://www.science.eclipse.co.uk/sft_maths.pdf
https://fractalforums.org/f/28/t/4360

distance estimates https://mathr.co.uk/helm

interior detection https://fractalforums.org/f/28/t/4802
The Mandelbrot Set
High precision reference orbit:
1 =22 +C
m starts at 0 with Zg = 0.
Perturbation
Low precision deltas relative to high precision orbit. Pixel orbit Z,, + z,, C + c.
Znt+1 = 2Zmzn + 2'721 +c
m and n start at 0 with zg = 0.

Rebasing

Rebasing to avoid glitches: when
| Zm + 20| < |2

replace z, with Z,, + z, and reset the reference iteration count m to 0.

Bivariate Linear Approximation

When Z is large and z is small, the iterations can be approximated by bivariate linear function;

Zn+l = An,lzn + Bn,lc

This is valid when the non-linear part of the full perturbation iterations is so small that omitting it would
cause fewer problems than the rounding error of the low precision data type.

14

https://mathr.co.uk/helm
https://fractalforums.org/f/28/t/4802

Single Step BLA

Approximation of a single step by bilinear form is valid when
|22| << 2Zn2n + ¢
{+ definition of A, 1, By, for single step
|272L| << |An,lzn + Bn,10|
f definition of € (for example, € = 272%)
|Z’?L| < 6|An,lzn + Bn,10|
I+ triangle inequality
22| < €| An 12| — €[Bn ¢l
1+ algebra
|Zn|2 —€[An1||zn] + €[Bn,llen| <0
1 quadratic formula
< Anal+ V(€[An)2 — 4€|Bp][]

{ linear Taylor polynomial (**approximation**)

|Bn 1|
n An - . =iy
|Z | < €|)1 |An,1| |C| R ,1
For single step of Mandelbrot set:
aZm—H
Apq= =27
LT 07,
aZm+1
B = =1
1T a0
R, 1 = max<0,e2|Z,,| — ﬁ
’ ’ 2[Zm|

Note: this is different to the formulas suggested by Zhuoran on Fractal Forums, but I couldn’t get them to
work, and this version does seem to work fine.

Merging BLA Steps

If T, skips I, iterations from iteration m, when |z| < R, and T, skips [, iterations from iteration mg, + I,
when |z| < R, then T, =T, o T, skips I, + [, iterations from iteration m, when |z| < R.:

Zrmg oty = Ay(Ayzm, + Bye) + Byce = Az, + B,c
Amw,lz-‘rly = Az = AyAz
Bmx,lirly =B, = AyBI + By

R, - |B.
Rmm,lm"t‘ly = RZ = max {O7min {RI7 W}}

BLA Table Construction

Suppose the reference has M iterations. Create M BLAs each skipping 1 iteration (this can be done in
parallel). Then merge neighbours without overlap to create {%] each skipping 2 iterations (except for
perhaps the last which skips less). Repeat until there is only 1 BLA skipping M — 1 iterations: it’s best to
start the merge from iteration 1 because reference iteration 0 always corresponds to a non-linear perturbation

step as Z = 0.
The resulting table has O(M) elements.

15

BLA Table Lookup

Find the BLA starting from iteration m that has the largest skip [satisfying |z| < R. If there is none, do a
perturbation iteration. Check for rebasing opportunities after each BLA application or perturbation step.

Non-Conformal BLA

The Mandelbrot set is conformal (angles are preserved). This means complex numbers can be used for
derivatives. Some other formulas are not conformal, for example the Tricorn aka Mandelbar, defined by:

X+iY - (X —iY) +C

For non-conformal formulas, replace complex numbers by 2 x 2 real matrices for A, B. Dual numbers with
two dual parts can be used to calculate the derivatives.

Be careful finding norms. Define sup |[M| and inf | M| as the largest and smallest singular values of M. Then
single step BLA radius becomes

sup | B
inf |A]

R =e¢inf |A| — ||

and merging BLA steps radius becomes

— B
R, = maX{O,min{Rx, Rysup|3,|c|}}
sup [Ay |

ABS Variation BLA

The only problem with the Mandelbrot set is the non-linearity, but some other formulas have other problems,
for example the Burning Ship, defined by:

X +iY = (| X|+dY])2+C

The absolute value folds the plane when X or Y are near 0, so the single step BLA radius becomes the
minimum of the non-linearity radius and the folding radii:

B
R = max {O,min {einf 4] - S,“lfolA| le|, 1X], |Y|}}
mn

Currently Fraktaler 3 uses a fudge factor for paranoia, dividing | X| and |Y| by 2. The merged BLA step
radius is unchanged.

Hybrid BLA
For a hybrid loop with multiple phases, you need multiple references, one starting at each phase in the loop.
Rebasing switches to the reference for the current phase. You need one BLA table per reference.

Multiple Critical Points

Some formulas (but none among those implemented in Fraktaler 3) have multiple critical points. In this case
some modifications need to be made: you need a reference per critical point, and rebasing needs to switch to
the nearest orbit among all critical points. There needs to be a separate BLA table for each reference. This
also applies to hybrids, you need one reference and BLA table per critical point per phase.

Distance Estimation

Keep track of derivatives of Z + z wrt. pixel coordinates k. As Z is constant for the whole image, you just
need g—z. An easy way to do this is with dual numbers for automatic numeric differentiation. Set up the pixel
coordinates as dual numbers with dual part 1 + 07, then transform them to the complex C+c plane of the

16

fractal iterations. At the end you plug the complex derivative into the (directional) distance estimate formula,
it is already prescaled by the pixel spacing (this also helps to avoid overflow during iteration).

For non-complex-analytic formulas (like Mandelbar and Burning Ship), you can use dual numbers with two
dual parts, for each of the real and imaginary components. At the end they can be combined into a Jacobian
matrix and used in the (directional) distance estimate formula for general iterations.

Interior Detection

Keep track of derivatives of Z + 2z wrt. Z; + 21 (where Zy + 2o is at the critical point, usually 0). When
the absolute value of the derivative drops below a threshold such as 0.001, classify it as interior and stop
iterating. For non-complex-analytic formulas, dual numbers with four dual parts can be used (two for distance
estimation and two for interior detection), along with matrix operator norm.

Using ddTZI works because:

d(Z + x)
d(Z1+Zl)
_ dz . d
Cd(Zi+) d(Zy +)
I S
=42 | dz ' 42 | d=
az Yz T ta
1
240 0+
_dz d:
_le le

dz
=04+ —

+le
_dz
_d21

where the last two lines hold when C' is periodic with Z = 0 in the orbit which happens precisely when the
formula has a critical point at 0 and C' is the nucleus of a hyperbolic component.

Alternatives

Other fractal deep zoom software that also uses bilinear approximation (BLA) for acceleration includes:

fractalshades Fractalshades is a Python package for creating static and interactive visualisations of 2d
fractals. It targets Windows and Unix operating systems and implements efficient algorithms for
very-deep exploration of the Mandelbrot and the Burning_ Ship sets (1.e-2000 scale and beyond).

Fractal Zoomer An application that lets you render some of the most known fractal functions. It comes
with alot of options to further enhance your fractal experience! Its easy to use and does not require
installation. A java version higher than 1.8 is required to be installed.

Imagina Imagina is a fast fractal renderer & explorer.

The project is being rewritten. This repository may be renamed and replaced by the rewritten version
when it’s available.

Get in touch if you know of other software (closed or open source, payware or gratis) that is comparable
and I'll add it to the list!

17

https://gbillotey.github.io/Fractalshades-doc
https://sourceforge.net/projects/fractalzoomer
https://github.com/5E-324/Imagina

TODO

These missing features could be classified as bugs if you're mean.

e there are no colouring algorithm options
e implement GUI for zoom out sequence rendering
o fix IO
— should load metadata from images
— CLI should have an option to save TOML from argument (which could be an image)
— implement EXR channel output filters (to save disk space and time)
e implement low + high bailout
— ensure BLA doesn’t escape past low bailout
— don’t use BLA between low bailout and high bailout
store cooked values at low bailout
— store cooked values at high bailout
— option to rename channels to avoid clashes
channel filters to save memory and calculation time (no-DE mode?)
 stripe average colouring based on last few iterations
— checkpoint iterations and roll-back if BLA skipped too far
— see if low + high bailout is good enough for colouring, hopefully won’t need iterations before low
bailout?
— maybe float will not have enough range here, switch to floatexp for last few iterations (or
assume the + c is trivial)
e optimize MPFR memory allocation
— period detection
— root finding
— size calculation
e optimize conformal formulas
— use complex numbers instead of matrices
— Mandelbrot set / multibrot only
e number type wisdom
— detect blank images and omit (platform, device, type) from wisdom
e high resolution rendering dialog
— dimensions in inches and dots per inch
automatically translated to/from pixels
— exports to toml for command line renderer
— option to enable reuse reference and zoom out sequence
e extend colouring algorithms
— port nice algorithm from Rodney, parameterized
— allow custom OpenCL source for colouring snippet (no parameters)
— allow custom GLSL source with dynamically generated UI for uniforms
use OpenCL/OpenGL (with/without interop) to do colouring with custom GLSL with UI
— use OSMesa to do colouring without a DISPLAY
e compat with other software
— KFR location import, including metadata from image files
— KFR location export, including metadata to image files
— KFP palette import (with default GLSL implementation copied from KF)
— KF custom GLSL import mode (see zoomasm)
— custom GLSL export for zoomasm
e Android
— log crashes somehow and start with option not to restore persistence
— support earlier versions
o Web
— fix copy/paste from host OS into ImGUI dialog boxes
— export/import parameters to/from host clipboard or via up/download

18

— export/import parameters to/from URL hash (base64)
— export image as download (browser canvas right click is captured)

¢ Windows

— GUI on ARM is missing

Bugs

For an up-to-date bug list see https://mathr.co.uk/web/fraktaler.html.

History

Version 0

2021-12-10 : project started.

Version 1

2023-03-13 : version 1 released. 423 git commits since version 0.

Version 1.1

2023-03-20 : version 1.1 released. 18 git commits since version 1.

fix smooth iteration calculation for powers other than 2.

fix perturbation glitches for high powers.

fix too-bright EXR export from GUI.

fix vertically flipped EXR export from GUIL

fix auto stretch with reflection enabled.

fix Newton transform with reflection enabled.

fix reflection intuition in transformation GUI.

fix rotation intuition in transformation GUI.

fix crash when zooming out too far.

fix progress reporting (done tiles vs started tiles).

fix crash when loading bad wisdom.

fix cancelling tiles takes too long with CPU backend.

fix for multiple parameters on command line.

fix non-central references.

fix image dimensions in GUI (now correctly locked to window size).

fix wisdom benchmarking (now easier to disable devices).

fix misleading number_types setting (was nonfunctional, now deleted).

fix iteration band glitches for high powers; a partial fix with workarounds still be required:
— lower bailout escape radius (changes appearance with some colourings);

— disable single precision float (low range type) in wisdom (may be slower).

19

https://mathr.co.uk/web/fraktaler.html

Version 2
2023-03-31 : version 2 released. 59 git commits since version 1.1.
o formula engine rewritten using opcode model:
— faster computationally,
— more robust mathematically,
— more flexible artistically.
o wisdom configuration via the graphical user interface.
— note: wisdom file format is incompatible with earlier versions, wisdom will need to be regenerated.
e preview transformations for keyboard navigation.
o clipboard copy/paste in Input/Output dialog.
e new BLA steps limit in Bailout dialog reduces computation time.
e lock reference iterations to iterations to prevent bad images.
o tile size can be set in Algorithm dialog.
o fix Newton zoom dialog custom size entry.

e fix wisdom hardware grouping logic.

Version 1.2
2023-07-13 : version 1.2 released. 10 git commits since version 1.1.
o fix bad rendering to the left of the needle.
e fix typo in wisdom stopping.
¢ documentation improvements.
e use build-scripts for third-party dependencies.

e upgrade third-party dependencies to latest versions.

Version 1.2.1
2023-07-14 : version 1.2.1 released. 2 git commits since version 1.2.

e fix build for web with current emscripten versions.

Version 2.1
2023-07-14 : version 2.1 released. 14 git commits since version 2.
 incorporate changes from versions 1.2 and 1.2.1.

o fix typo preventing setting bla steps by text entry.

Legal
Fraktaler 3 — Fast deep escape time fractals
Copyright (C) 2021-2023 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero
General Public License as published by the Free Software Foundation, version 3.

20

https://mathr.co.uk/web/build-scripts.html

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not,
see https://www.gnu.org/licenses/.

https://mathr.co.uk

21

https://www.gnu.org/licenses/
https://mathr.co.uk

	Fraktaler 3
	Live
	Download
	Run
	Wisdom
	Run GUI
	Run CLI
	Run Web
	Run Android

	GUI
	Navigation
	Fraktaler 3 Window
	Input/Output Window
	Formula Window
	Status Window
	Location Window
	Reference Window
	Bailout Window
	Transform Window
	Algorithm Window
	Quality Window
	Newton Zooming Window
	Wisdom Window
	About Window

	CLI
	Parameters
	Location Parameters
	Reference Parameters
	Bailout Parameters
	Transform Parameters
	Image Parameters
	Render Parameters
	Newton Parameters
	Algorithm Parameters
	OpenCL Parameters
	Formula Parameters
	Recommended Parameters for Zoomasm

	Source
	Build
	Source Dependencies
	Optional Features
	Build For Debian
	Build For Windows
	Emscripten Dependencies
	Build For Android
	Build Documentation
	Build Release

	Theory
	The Mandelbrot Set
	Perturbation
	Rebasing
	Bivariate Linear Approximation
	Single Step BLA
	Merging BLA Steps
	BLA Table Construction
	BLA Table Lookup
	Non-Conformal BLA
	ABS Variation BLA
	Hybrid BLA
	Multiple Critical Points
	Distance Estimation
	Interior Detection

	Alternatives
	TODO
	Bugs
	History
	Version 0
	Version 1
	Version 1.1
	Version 2
	Version 1.2
	Version 1.2.1
	Version 2.1

	Legal

